Auto-Correlation Function Plots
plot_acfs
simply plots the Auto-Correlation Function (ACF) of the imaginary and real parts in the selected RAWACF file.
Basic code to plot ACFs from a RAWACF file would look like:
import matplotlib.pyplot as plt
import pydarn
file = "20180101.0000.01.rkn.rawacf"
sdarn_read = pydarn.SuperDARNRead(file)
rawacf_data = sdarn_read.read_rawacf()
pydarn.ACF.plot_acfs(rawacf_data)
plt.show()
You also have access to numerous plotting options:
Parameter | Action |
---|---|
beam_num=0 | beam number to plot |
gate_num=0 | gate number to plot |
parameter='acfd' | parameter to pick between acfd or xcfd plotting |
scan_num=0 | the scan number to plot |
start_time=None | plot the closest beam scan to the given start time (overrides the scan number if set) |
ax | matplotlib axes object |
normalized=True | normalizes the parameter data with the associated power 0 value |
real_color='red' | Real part of the parameter line color |
imaginary_color='blue' | Imaginary part of the parameter line color |
plot_blank=False | Determine if blanked lags should be plotted |
blank_marker='o' | Choice of marker to indicate blanked lags are a dot (general python markers accepted) |
legend=True | plot a legend |
kwargs | arguments passed in matplotlib line_plot for real and imaginary plots |
If blank lags are present in the data, it will look similar to the following:
import pydarn
import matplotlib.pyplot as plt
from datetime import datetime
rawacf_file = '20140105.1200.03.cly.rawacf'
rawacf_data = pydarn.SuperDARNRead(rawacf_file).read_rawacf()
pydarn.ACF.plot_acfs(rawacf_data, beam_num=15, gate_num=16, start_time=datetime(2014, 1, 5, 13, 30))
plt.show()